
ALTERATION OF THE MODEL DESCRIBING THE
 STABILIZED HYSTERESIS LOOP

Hani. H. A. El-Sharawy
Jaime T. P. de Castro
Catholic University of Rio de Janeiro, Mechanical Engineering Department
Rua Marquês de São Vicente, 225, Gávea, CEP:22453-900, Rio de Janeiro, RJ, Brazil

Abstract. The equation describing the stabilized hysteresis loop is based on the Ramberg-
Osgood relation for the cyclic stress-strain curve, and employs the same coefficients n′ and
K′. This model implies that the expanded cyclic curve should coincide with the shape of the
hysteresis loops. It is shown that an acceptable fit is not necessarily observed. A structural
and an oil drill tube steels were loaded under alternating strain control. Strain ranged up to
1.8 %. An estimate of the loop shape based on one value of the exponent n′ is not feasible. A
better fit is obtained based  on two values of the cyclic exponent. The results strongly suggests
the dependence  of the dynamic strain hardening mechanism on the deformation range.
Optimum curve fitting requires  adjustment of the model equation.
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1. INTRODUCTION

The cyclic characteristics of metallic materials are determined after alternating strain
control fatigue tests. In practice, a power relation is used to describe the stress-plastic strain
cyclic relation:
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The cyclic strain hardening exponent, 'n , and coefficient, 'K , are determined by linear
adjustment of the logarithmic form of “Eq. ( 1 )”, and are considered to be material constants.
“Equation ( 1 )” implies that the amplitudes of a given coordinate ( aσ , paε ) along the cyclic
stress-strain curve are determined at the peak of the corresponding stabilized hysteresis loop.
To that effect, the determination of material constants assumes that the material is effectively
cyclically stable, the transient material reaction extending up to at most 10% of the crack
initiation period.

As for monotonic loading, the Ramberg-Osgood model is used to describe the cyclic
stress-strain curve. Independent of the total applied strain range, the model divides the strain
amplitude, for a given stabilized hysteresis loop, into an elastic and plastic components:



( ) '/1'// n
aaa KE σσε += .                                                                                           ( 2 )

“Equation ( 2 )” describes the stabilized cyclic stress-strain curve. That is, each point on the
curve represents a given total strain range and the maximum stress of the corresponding
hysteresis loop. The strain and stress amplitudes may be given in terms of the respective
ranges, ∆, and “Eq. ( 2 )” becomes:
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The strain and stress ranges in “Eq. ( 3 )” represent the difference between the maximum
and minimum strain and stress values for a given strain range and, therefore, describes ½ of
the loop cycle. The equation is effectively an expanded form (a scale factor of 2) of the cyclic
stress-strain curve, “Eq. (2)”. In order to justify the scale factor observation and the validity of
“Eq. ( 3 )” as the equation describing the Hysteresis loop shape we analyze the multistage
spring-slider model of the cyclic stress-strain curve as shown in “Fig ( 1 )” ( Dowling, 1993).
the characteristics of the model are observed first on loading, then on unloading.
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Figure 1- Multistage spring and slider model

1.1. Model analysis on loading

"Figure (1)” shows that the non-linear plastic region may be approximated by a sequence
of linear segments of consecutively lower slopes. The number of segments will depend on the
sought level of curve adjustment. Each linear segment is modeled by a spring-frictionless
slider element. Since the plastic curve tends to level off as the strain )(ε  increases, the slope

of the consecutive segments decreases, and may be given as a fraction ( Eiδ ) of the elastic

modulus E , where iδ  is the slope-reduction-factor, i  = 1,2,3, ..., and ii δδ <+1 .



As the material is loaded in tension, the first (independent) spring, 1E , resists the load

alone up to the yield limit of the first slider, 02σ ; the limit at which the material is about to

flow plastically. Being frictionless, the slider moves under a constant load 02σ . Therefore, the

load increase above 02σ  will be supported only by the parallel spring, 2E , up to the yield limit

of the second slider, 03σ . The second spring-slider element will then repeat the sequence of

slider-spring movements, and so on. It should be clear that the slider in a given spring-slider
element will not move before the applied load attains its yield limit and, due to the parallel
connection, the accompanying spring remains stationary while the slider is not moving.

The stress after yielding in a given i  stage is given by :

iiio E εσσ +=  ,                                                                                                   ( 4 )

where iε  is the strain of the corresponding spring. Solving for strain :
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and the total strain after yielding of j  stages :
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Since a given spring-slider element will not move before all the previous elements have
moved and the slider characteristic yield load is attained, the slope of any linear segment, say

Ejδ , will be associated to the stiffness of all springs in series for which the corresponding

sliders have yielded. It can be easily shown ( Dowling, 1993) that:
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1.2. Model analysis during unloading

We consider any stage ( say the thi  line-segment ) of the multistage model of “Fig. ( 1 )”.
After yielding of that stage, the stress at a given stress-strain point ( ε′, σ′ ) on the stress-strain
curve is given by:

iiio E εσσ ′+=′ ,                                                                                                  ( 8 )

where iE  is the slope and iε ′  the strain of the thi  line-segment only. It should be understood

that iiE ε ′  is the stress increment sustained in thi  stage by the spring only. If the direction of

loading is reversed at the point ( ε′, σ′ ), the strain iε ′  will not be changed (reduced) before the

slider moves ( yields ) in compression. That is, before the slider stress reaches ioσ− , neither



the slider nor the spring will move and the stress sustained by the spring, iiE ε ′ , remains

unchanged. Therefore, the thi  stage remains locked during unloading until the resistance of
the slider is again overcome at a slider stress of ioσ− . Accordingly, the stress, on the strain-

stress curve, at the point of reversed yielding of the thi  stage is given by :

iiio E εσσ ′+−=′′ ,                                                                                               ( 9 )

and the stress difference, σ ′′∆ , between the point of stress reversal ( ε′, σ′ ) and the point of

reversed yielding of the thi  stage, is the difference between “Eq. ( 8 )” – “Eq. ( 9 )” :

ioσσσσ 2=′′−′=′′∆  .                                                                                  ( 10 )

“Equation ( 10 )” shows that, based on a multistage slider-spring element, the stress
difference, σ ′′∆ , leading to the reversed yielding of a given stage is twice the stress required
for moving the same slider in monotonic tension. Beyond the point of reversed yielding of the

thi  stage, the stress on the slider remains at ioσ− , and the further increase in the stress

difference, ioσσ 2−∆  is taken up by the elastic negative deflection of the associated spring

only. Therefore, the contribution of the the thi  stage on the strain change is :
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and the total strain change is the sum of all yielded stages :
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where all the stages through the j th stage have reverse yielded. Recalling that the point of

load reversal is ( ε′, σ′), the new coordinate on the ( ), εσ  axis after reverse yielding of a
given number of stages is given by :

σσσ ∆−′= ,               εεε ∆−′= .                                                      ( 13 )

The slope, 
ε
σ

∂
∂

, at any point of the stress-strain path during reverse loading may be

calculated by considering “Eq. ( 12 )” and “Eq. ( 13 )” :
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“Equation ( 14 )” and “Eq. ( 7 )” show that the slope of a given stage on reverse loading
is the same as the slope of the very stage on monotonic loading. At the same time, “Eq. ( 10 )”
show that the stress difference of a given slider on reversed yielding is twice the monotonic
yield stress. In other words, the intervals between reversed yielding are twice as large as the



intervals between the corresponding monotonic yielding intervals. This shows that, during
reverse loading, the curve of the strain-stress path has the same shape as monotonic loading,
but is expanded by a scale factor of two and, consequently, the length of the straight-line
segments of the unloading path is double that of the corresponding monotonic segments

 The monotonic strain response, “Eq. ( 6 )” and the strain response during unloading,
“Eq. ( 12 )”, may be written as a function of the stress and stress difference, respectively:
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Since the stress and strain increments are always referred to the reversal point, “Eq. ( 16 )”
will lead to “Eq. ( 3 )" when the end point on the reversed stress-strain curve is another
reversal point.

1.3. Loop shape

As shown above, “Eq. ( 16 )” defines the stress-strain path up to 2/1  the fatigue loading
cycle. Therefore, the loop shape is determined by solving “Eq. ( 3 )” twice; once for positive
and another for negative increments of strain. The positive increments curve is referenced to
the minimum strain value, and the negative increments curve is referenced to the maximum
strain value.

Given that the area of the hysteresis loop is a measure of the plastic work expended per
cycle, an accurate description of the loop form is necessary in order to evaluate the material
capacity to accommodate cyclic plasticity. It is noted that the incremental form of the
Ramberg-Osgood model, “Eq. ( 3 )”, defines the loop shape in terms of the material cyclic
constants. This paper analyzes the validity of the extended Ramberg-Osgood model and
suggests necessarily adjustments.

2. MATERIAL AND EXPERIMENT

Cylindrical 1020 and API X-70 steels specimens were fatigued under alternating strain
control. Samples dimension was optimized to prevent buckling. Both steels were machined to
a gauge length of 15 mm, a specimen cross section of 7.5 mm for the API X-70 steel and 13
mm for the 1020 steel. The applied strain ranges are shown in Table 1. Amplitude ranges
above 1.20 % were not feasible in the API X-70 Steel due to specimen bucking.

Table 1- Applied Strain Amplitude   %

1020  steel 0.25 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
API X-70 0.40 0.60 0.70 0.80 0.90 1.00 1.20

     Data acquisition was programmed to permit a sufficiently continuous record of the
sample load reaction. The record permits the identification of the transient, cyclic stability and
the crack propagation periods. Minimum alterations of hysteresis loop shape may thus be



identified. The stability region was identified, or assumed were necessary, after the plot of the
variation of the maximum and minimum load. The cyclic stress-strain curve was determined
for each steel by adjusting the peaks of the concentric loops.

The theoretical hysteresis loops were determined by substituting into the incremental
model as explained above. The level of discrepancy between the model and the experimental
loops was determined by superimposing the respective experimental and theoretical curves.

3. RESULTS AND DISCUSSION

“Figure ( 1 )” shows the typical cyclic behavior of the 1020 steel. The steel load reaction
stabilizes after a given softening period. The relative transient period, given as the ratio of
( transient period / stability period ), is in the range of 30-40 % as shown in Table 2, which is
well above the generally accepted 10 % period. This difference may not be attributed to a
material strain rate sensitivity given that the test frequency was varied between 0.2 to 5 Hz.
Also, the difference may not be attributed to sample misalignment since both the maximum
and minimum loads typically converge to stability at the same rate, as shown in “Fig. ( 1 )”.

Table 2- Relative Transient Period

Strain Amp. % 0.25 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 1020
Steel Transience  % 0.39 0.40 0.33 0.40 0.31 0.38 0.34 0.40 0.29

Strain Amp. % 0.40 0.60 0.80 0.70 0.90 1.00 1.20X-70
Steel Transience  % 0.41 0.40 0.40 0.39 0.36 0.40 0.35

Load - Time  Curves  -  1020  steel 
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Figure 1- Cyclic stability in 1020 steel

On the other hand, “Fig. ( 2 )” shows that cyclic softening is continuous in the API X-70
steel. In this case, relative stability was taken as the range of constant (linear) softening rate.
This procedure permits the identification of a ‘stabilized’ loop representative of the steel
behavior at  the given strain  range,  namely the mid  range loop. Table 2 shows  that, as for
the 1020 steel, relative stability is, in general, independent of the strain amplitude.



Load - Time  Curves  -  API X-70  steel 
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Figure 2- Relative Cyclic stability in API X-70 steel

“Figures ( 3 ) and “Fig. ( 4 )” show the cyclic stress-strain curves superposed on the
respective stabilized hysteresis loops. In order to guarantee coherent comparison with the
monotonic behavior, the cyclic constants n′ and K′ were determined by considering only the
peak loads of the hysteresis loops. It should be mentioned that adjustment of a cyclic stress-
strain curve using the compressive peaks of the stabilized loops returns slightly higher values
of the cyclic strain hardening exponent, n′, ( El-Sharawy & Castro, 1998). As expected, the
1020 steel show, an exponential work hardening cyclic behavior, while “Fig. ( 4 )”. shows the
cyclic behavior of the API steel nears an elastic-perfectly plastic material.

Stabilized   Hysteresis   Loops
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Figure 3     Stabilized Hysteresis Loops and Cyclic Stress-Strain Curve  - 1020 Steel
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Figure 4    Stabilized Hysteresis Loops and Cyclic Stress-Strain Curve  - API X-70

3.1 Model and experimentally determined loops

     Changing material characteristics are generally considered at the two ends of fatigue crack
initiation. Shang and Ding (1996) studied the transient behavior in aluminum and steel alloys
by defining a changing cyclic softening factor. At the other end, Abel (1997) analyzed the
loop shape in order to understand the process of plastic instability.
     Variations of the cyclic strain hardening exponent are usually related to the transient
period (Berkovits, 1987). The parameter is expected to remain constant within the stability
region and little attention has been given to possible variation during this period. However, as
shown in “Fig. ( 5 )”, the model may deviate significant from the experimental curve.

Experiment  and  Model  -  1020 Steel 
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Figure 5    Model and experimental curves  ( one cyclic strain hardening exponent )



“Figure ( 5 )” shows clearly that the discrepancy increases as the strain range is increased,
the discrepancy is pronounced at the beginning of the plastic range and is gradually reduced
until both curves coincide at the other load reverse point. This behavior is also observed in the
API steel. The deviation of the model from the experimental curve is attributed to the
limitation of the spring and slider rheological model of “Fig. ( 1 )”. If, on the one hand, the
model provides a useful idealization of cyclic loading, it does not include time-dependent
effects or show other complexities observed in real materials ( Dowling, 1993).

Besides, the model of “Eq. ( 1 )” follows the monotonic approach and relates the stress to
the plastic strain through one strain hardening exponent. This approximation is essentially
valid for medium carbon steel materials. However deviations from a one exponent
relationship are frequently observed, where the experimental stress-plastic strain points are
better described by two straight lines on the log-log plot of the monotonic model ( Dieter,
1976).

In order to investigate the effect of a variable strain hardening coefficient, the strain range
was divided into two regions and the exponent recalculated for each region. The first region
extended up to 0.6 %, and as shown in “Fig. ( 6 )” a much better fit is obtained.

Experiment  and  Modified  Model  -  1020  Steel 
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Figure 6    Model and experimental curves  ( two cyclic strain hardening exponent )

     Though the discrepancy is considerably reduced by adopting two strain hardening
exponent, the model continues to deviate from experiment at higher strain ranges. The
deviation of experiment from model may not be attributed to specimen buckling since the
discrepancy is symmetrical about the stress axis. It may be suggested that coincidence of
model and experiment at higher strain ranges (1.00 and 1.80 %) can be achieved by
substituting an even lower n′ value. However, this will push the start of the plastic strain range
(end of the elastic straight line range) up to higher, unrealistic, stresses. Also, the difference
between constant frequency and constant stain rate responses should be investigated. In this
paper, fatigue testing was performed under constant frequency. This means that the strain rate
was increased with the increase in the applied strain range; that is possible inelastic effects on
the stress-strain response were different at each strain range.
     It may be concluded that two strain hardening exponents permit a much better fit of the
stabilized hysteresis loops. However, refinement is still required. To this end, work is in
progress to introduce alterations in the expanded form of the Ramberg-Osgood model.
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